Published in

Oxford University Press, Nephrology Dialysis Transplantation, 9(36), p. 1675-1684, 2020

DOI: 10.1093/ndt/gfaa122

Links

Tools

Export citation

Search in Google Scholar

Metagenomic profiling of gut microbiome in early chronic kidney disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The relationship between chronic kidney disease (CKD) and the gut microbiome, which interact through chronic inflammation, uraemic toxin production and immune response regulation, has gained interest in the development of CKD therapies. However, reports using shotgun metagenomic analysis of the gut microbiome are scarce, especially for early CKD. Here we characterized gut microbiome differences between non-CKD participants and ones with early CKD using metagenomic sequencing. Methods In total, 74 non-CKD participants and 37 participants with early CKD were included based on propensity score matching, controlling for various factors including dietary intake. Stool samples were collected from participants and subjected to shotgun sequencing. Bacterial and pathway abundances were profiled at the species level with MetaPhlAn2 and HUMAnN2, respectively, and overall microbiome differences were determined using Bray–Curtis dissimilarities. Diabetic and non-diabetic populations were analysed separately. Results For diabetic and non-diabetic participants, the mean estimated glomerular filtration rates of the CKD group were 53.71 [standard deviation (SD) 3.87] and 53.72 (SD 4.44), whereas those of the non-CKD group were 72.63 (SD 7.72) and 76.10 (SD 9.84), respectively. Alpha and beta diversities were not significantly different between groups. Based on taxonomic analysis, butyrate-producing species Roseburia inulinivorans, Ruminococcus torques and Ruminococcus lactaris were more abundant in the non-CKD group, whereas Bacteroides caccae and Bacteroides coprocora were more abundant in the non-diabetic CKD group. Conclusions Although gut microbiome changes in individuals with early CKD were subtle, the results suggest that changes related to producing short-chain fatty acids can already be observed in early CKD.