Elsevier, Molecular and Cellular Neuroscience, (56), p. 263-271, 2013
DOI: 10.1016/j.mcn.2013.06.006
Full text: Download
Parkinson's disease is the second most common neurodegenerative disease, and is characterised by the progressive degeneration of the nigrostriatal dopaminergic (DA) system. Current treatments are symptomatic, and do not protect against the DA neuronal loss. One of the most promising treatment approaches is the application of neurotrophic factors to rescue the remaining population of nigrostriatal DA neurons. Therefore, the identification of new neurotrophic factors for midbrain DA neurons, and the subsequent elucidation of the molecular bases of their effects, are important. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth differentiation factor 5 (GDF5), have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. Using the SH-SH5Y human neuronal cell line, as a model of human midbrain DA neurons, we have shown that GDF5 and BMP2 induce neurite outgrowth via a direct mechanism. Furthermore, we demonstrate that these effects are dependent on BMP type I receptor activation of canonical Smad 1/5/8 signalling.