Published in

MDPI, Journal of Clinical Medicine, 9(9), p. 2783, 2020

DOI: 10.3390/jcm9092783

Links

Tools

Export citation

Search in Google Scholar

Identification of a Plasma Microrna Signature as Biomarker of Subaneurysmal Aortic Dilation in Patients with High Cardiovascular Risk

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Patients with subaneurysmal aortic dilation (SAD; 25–29 mm diameter) are likely to progress to true abdominal aortic aneurysm (AAA). Despite these patients having a higher risk of all-cause mortality than subjects with aortic size <24 mm, early diagnostic biomarkers are lacking. MicroRNAs (miRs) are well-recognized potential biomarkers due to their differential expression in different tissues and their stability in blood. We have investigated whether a plasma miRs profile could identify the presence of SAD in high cardiovascular risk patients. Using qRT-PCR arrays in plasma samples, we determined miRs differentially expressed between SAD patients and patients with normal aortic diameter. We then selected 12 miRs to be investigated as biomarkers by construction of ROC curves. A total of 82 significantly differentially expressed miRs were found by qPCR array, and 12 were validated by qRT-PCR. ROC curve analyses showed that seven selected miRs (miR-28-3p, miR-29a-3p, miR-93-3p, miR-150-5p, miR-338-3p, miR-339-3p, and miR-378a-3p) could be valuable biomarkers for distinguishing SAD patients. MiR-339-3p showed the best sensitivity and specificity, even after combination with other miRs. Decreased miR-339-3p expression was associated with increased aortic abdominal diameter. MiR-339-3p, alone or in combination with other miRs, could be used for SAD screening in high cardiovascular risk patients, helping to the early diagnosis of asymptomatic AAA.