Published in

MDPI, Plants, 9(9), p. 1104, 2020

DOI: 10.3390/plants9091104

Links

Tools

Export citation

Search in Google Scholar

Effects of Postharvest Water Deficits on the Physiological Behavior of Early-Maturing Nectarine Trees

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The physiological performance of early-maturing nectarine trees in response to water deficits was studied during the postharvest period. Two deficit irrigation treatments were applied, moderate and severe, and these were compared with a control treatment (fully irrigated). Stem water potential and leaf gas exchange (net CO2 assimilation rate, ACO2; transpiration rate, E; and stomatal conductance, gs) were measured frequently. Drought avoidance mechanisms included a decrease in stomatal conductance, especially in the case of the severe deficit treatment, which also showed a strong dependence of ACO2 on gs. Intrinsic water-use efficiency (ACO2/gs) was more sensitive than instantaneous water-use efficiency (ACO2/E) as an indicator to detect water deficit situations in nectarine trees. However, in contrast to the results obtained for other deciduous fruit trees, a poor correlation was found between ACO2/E and ACO2/gs, despite the important relation between E and gs. ACO2/E was also weakly correlated with gs, although this relationship clearly improved when the vapor pressure deficit (VPD) was included, along with gs as the independent variable. This fact reveals that apart from stomatal closure, E depends on the boundary layer conductance (gb), which is mediated by VPD through changes in wind speed. This suggests low values of the decoupling coefficient for this water-resilient species.