Published in

MDPI, Marine Drugs, 9(18), p. 444, 2020

DOI: 10.3390/md18090444

Links

Tools

Export citation

Search in Google Scholar

Sargassum fusiforme Polysaccharides Prevent High-Fat Diet-Induced Early Fasting Hypoglycemia and Regulate the Gut Microbiota Composition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A low fasting blood glucose level is a common symptom in diabetes patients and can be induced by high-fat diet (HFD) feeding at an early stage, which may play important roles in the development of diabetes, but has received little attention. In this study, five polysaccharides were prepared from Sargassumfusiforme and their effects on HFD-induced fasting hypoglycemia and gut microbiota dysbiosis were investigated. The results indicated that C57BL/6J male mice fed an HFD for 4 weeks developed severe hypoglycemia and four Sargassumfusiforme polysaccharides (SFPs), consisting of Sf-2, Sf-3, Sf-3-1, and Sf-A, significantly prevented early fasting hypoglycemia without inducing hyperglycemia. Sf-1 and Sf-A could also significantly prevent HFD-induced weight gain. Sf-2, Sf-3, Sf-3-1, and Sf-A mainly attenuated the HFD-induced decrease in Bacteroidetes, and all five SFPs had a considerable influence on the relative abundance of Oscillospira, Mucispirillum, and Clostridiales. Correlation analysis revealed that the fasting blood glucose level was associated with the relative abundance of Mucispinllum and Oscillospira. Receiver operating characteristic analysis indicated that Mucispinllum and Oscillospira exhibited good discriminatory power (AUC = 0.745–0.833) in the prediction of fasting hypoglycemia. Our findings highlight the novel application of SFPs (especially Sf-A) in glucose homeostasis and the potential roles of Mucispinllum and Oscillospira in the biological activity of SFPs.