Published in

BMJ Publishing Group, BMJ Open, 8(10), p. e036214, 2020

DOI: 10.1136/bmjopen-2019-036214

Links

Tools

Export citation

Search in Google Scholar

Novel approach to estimate tuberculosis transmission in primary care clinics in sub-Saharan Africa: protocol of a prospective study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

IntroductionTuberculosis (TB) transmission is difficult to measure, and its drivers are not well understood. The effectiveness of infection control measures at healthcare clinics and the most appropriate intervention strategies to interrupt transmission are unclear. We propose a novel approach using clinical, environmental and position-tracking data to study the risk of TB transmission at primary care clinics in TB and HIV high burden settings in sub-Saharan Africa.Methods and analysisWe describe a novel and rapid study design to assess risk factors for airborne TB transmission at primary care clinics in high-burden settings. The study protocol combines a range of different measurements. We will collect anonymous data on the number of patients, waiting times and patient movements using video sensors. Also, we will collect acoustic sound recordings to determine the frequency and intensity of coughing. Environmental data will include indoor carbon dioxide levels (CO2 in parts per million) and relative humidity. We will also extract routinely collected clinical data from the clinic records. The number of Mycobacterium tuberculosis particles in the air will be ascertained from dried filter units using highly sensitive digital droplet PCR. We will calculate rebreathed air volume based on people density and CO2 levels and develop a mathematical model to estimate the risk of TB transmission. The mathematical model can then be used to estimate the effect of possible interventions such as separating patient flows or improving ventilation in reducing transmission. The feasibility of our approach was recently demonstrated in a pilot study in a primary care clinic in Cape Town, South Africa.Ethics and disseminationThe study was approved by the University of Cape Town (HREC/REF no. 228/2019), the City of Cape Town (ID-8139) and the Ethics Committee of the Canton Bern (2019-02131), Switzerland. The results will be disseminated in international peer-reviewed journals.