Published in

Optica, Applied Optics, 27(59), p. 8285, 2020

DOI: 10.1364/ao.402510

Links

Tools

Export citation

Search in Google Scholar

Single graphene derivative layer as a hole transport in organic solar cells based on PBDB-T:ITIC

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A layer of fluorinated reduced graphene oxide (FrGO), as an alternative hole transport (HTL) in organic solar cells (OSCs) based on a PBDB-T:ITIC active layer, is reported. OSC configuration is ITO/HTL/PBDB-T:ITIC/PFN/FM; FM is Field’s metal, a eutectic alloy deposited at room atmosphere. PEDOT:PSS, FrGO/PEDOT:PSS, and FrGO are tested as HTLs; the average efficiencies of 8.8, 8.2, and 5.3%, respectively, are reached. Inhomogeneity of the FrGO layer is determined as the main factor that affects the photovoltaic behavior and stability. Device stability is very acceptable, sometimes with a superior behavior than data previously reported; FM also could potentially contribute to this enhanced stability.