Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Journal of Biomedical Semantics, 1(11), 2020

DOI: 10.1186/s13326-020-00228-8

Links

Tools

Export citation

Search in Google Scholar

Identifying disease trajectories with predicate information from a knowledge graph

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Knowledge graphs can represent the contents of biomedical literature and databases as subject-predicate-object triples, thereby enabling comprehensive analyses that identify e.g. relationships between diseases. Some diseases are often diagnosed in patients in specific temporal sequences, which are referred to as disease trajectories. Here, we determine whether a sequence of two diseases forms a trajectory by leveraging the predicate information from paths between (disease) proteins in a knowledge graph. Furthermore, we determine the added value of directional information of predicates for this task. To do so, we create four feature sets, based on two methods for representing indirect paths, and both with and without directional information of predicates (i.e., which protein is considered subject and which object). The added value of the directional information of predicates is quantified by comparing the classification performance of the feature sets that include or exclude it. Results Our method achieved a maximum area under the ROC curve of 89.8% and 74.5% when evaluated with two different reference sets. Use of directional information of predicates significantly improved performance by 6.5 and 2.0 percentage points respectively. Conclusions Our work demonstrates that predicates between proteins can be used to identify disease trajectories. Using the directional information of predicates significantly improved performance over not using this information.