Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 17(10), p. 5737, 2020

DOI: 10.3390/app10175737

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Characterization and Mechanical Properties of Nanocomposites Based on Novel Carbon Nanowires and Polystyrene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Carbon into polymer nanocomposite is so far a common additive for the enhancement of the polymer properties. The properties of the polymer, such as thermal, and especially its mechanical properties, are improved by the homogeneously dispersed carbon nanoparticles on the polymer matrix. In this study, carbon wires in nano dimensions are, for the very first time, synthesized via the hard templating method from the silicate matrix MCM-41, and used as nano additives of polystyrene. The carbon nanowires were chemically oxidized, and further modified by attaching octadecylamine molecules, for the development of organic functionalities onto carbon nanowires surface. The nanocomposite materials of polystyrene with the modified carbon nanowires were prepared by a solution-precipitation method at three nano additive to polymer loadings (1, 3 and 5 wt%). The as-derived nanocomposites were studied with a combination of characterization and analytical techniques. The results showed that the thermal and mechanical properties of the polystyrene nanocomposites gradually improved while increasing nano-additive loading until 3 wt%. More specifically, the 3 wt% loading sample showed the best mechanical properties, while the 5 wt% sample was difficult to achieve satisfactory dispersion of carbon nanowires and consequently has a wide range of values.