Published in

Cambridge University Press, Journal of the Marine Biological Association of the UK, 5(100), p. 783-793, 2020

DOI: 10.1017/s0025315420000752

Links

Tools

Export citation

Search in Google Scholar

Spatial environmental variability of natural markers and habitat use ofCathorops spixiiin a neotropical estuary from otolith chemistry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe goal of this study was to study the distribution of potential habitat markers (Sr/Ca, Ba/Ca, Mn/Ca and Li/Ca) in water from the Paranaguá Estuarine Complex (Brazil) and to study habitat use patterns of Cathorops spixii through ontogeny employing otolith microchemistry. Fish were caught from three sampling sites while water samples were collected at eight stations covering a salinity range from 4.5–33. Elemental concentrations in otolith and water were determined by LA-ICP-MS and ICP-MS, respectively. When the relationship between salinity and elements or ratios in water was studied, significant positive relationships were found for Sr, Li, Ca, Sr/Ca, and negative for Ba, Mn, Ba/Ca and Mn/Ca (P < 0.05). No relationship was observed between water Li/Ca and salinity. A significant positive correlation was found between otolith edge Sr/Ca and salinity (r = 0.63; P < 0.05), positioning this ratio as the best natural tag for reconstructing environmental histories of C. spixii. Change point analysis (CPA) based on otolith Sr/Ca signature through ontogeny revealed potential migrations between environments with different salinity. According to CPA, the number of displacements among different salinities ranged from 3–9 (6.1 ± 1.9), suggesting high plasticity in the migratory patterns. Ba/Ca, Li/Ca and Mn/Ca peaks were observed on the outer margin of the primordium, and could be influenced by physiological, environmental and maternal factors.