Published in

MDPI, Journal of Clinical Medicine, 8(9), p. 2640, 2020

DOI: 10.3390/jcm9082640

Links

Tools

Export citation

Search in Google Scholar

The Role of Iron and Erythropoietin in the Association of Fibroblast Growth Factor 23 with Anemia in Chronic Kidney Disease in Humans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Anemia in chronic kidney disease (CKD) is an almost universal complication of this condition. Fibroblast growth factor 23 (FGF23), a key-player in mineral metabolism, is reportedly associated with anemia and hemoglobin levels in non-dialysis CKD patients. Here, we sought to further characterize this association while taking into account the biologically active, intact fraction of FGF23, iron metabolism, and erythropoietin (EPO). Hemoglobin, EPO, iron, and mineral metabolism parameters, including both intact and c-terminal-FGF23 (iFGF23 and cFGF23, respectively) were measured cross-sectionally in 225 non-dialysis CKD patients (stage 1–5, median eGFR: 30 mL/min./1.73m2) not on erythropoiesis stimulating agents or intravenous iron therapy. Statistical analysis was performed by multiple linear regression. After adjustment for eGFR and other important confounders, only cFGF23 but not iFGF23 was significantly associated with hemoglobin levels and this association was largely accounted for by iron metabolism parameters. cFGF23 but not iFGF23 was also associated with mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV), again in dependence on iron metabolism parameters. Similarly, EPO concentrations were associated with cFGF23 but not iFGF23, but their contribution to the association of cFGF23 with hemoglobin levels was marginal. In pre-dialysis CKD patients, the observed association of FGF23 with hemoglobin seems to be restricted to cFGF23 and largely explained by the iron status.