Published in

MDPI, Inorganics, 8(8), p. 45, 2020

DOI: 10.3390/inorganics8080045

Links

Tools

Export citation

Search in Google Scholar

Second Order Nonlinear Optical Properties of 4-Styrylpyridines Axially Coordinated to A4 ZnII Porphyrins: A Comparative Experimental and Theoretical Investigation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this research, two 4-styrylpyridines carrying an acceptor –NO2 (L1) or a donor –NMe2 group (L2) were axially coordinated to A4 ZnII porphyrins displaying in 5,10,15,20 meso position aryl moieties with remarkable electron withdrawing properties (pentafluorophenyl (TFP)), and with moderate to strong electron donor properties (phenyl (TPP) < 3,5-di-tert-butylphenyl (TBP) < bis(4-tert-butylphenyl)aniline) (TNP)). The second order nonlinear optical (NLO) properties of the resulting complexes were measured in CHCl3 solution by the Electric-Field-Induced Second Harmonic generation technique, and the quadratic hyperpolarizabilities βλ were compared to the Density Functional Theory (DFT)-calculated scalar quantities β||. Our combined experimental and theoretical approach shows that different interactions are involved in the NLO response of L1- and L2-substituted A4 ZnII porphyrins, suggesting a role of backdonation-type mechanisms in the determination of the negative sign of Electric-Field-Induced Second Harmonic generation (EFISH) βλ, and a not negligible third order contribution for L1-carrying complexes.