Published in

American Association for the Advancement of Science, Science, 6510(369), p. 1493-1497, 2020

DOI: 10.1126/science.abc5186

Links

Tools

Export citation

Search in Google Scholar

Universal coherence protection in a solid-state spin qubit

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dressed for coherence Solid-state qubits based on the electron spin of defects in silicon carbide or diamond provide a robust and versatile architecture for developing quantum technologies. The longer the lifetime of a spin, the more manipulations and quantum calculations can be performed, making for a more powerful quantum computational platform. Miao et al. show that by dressing the spins associated with the divacancy in silicon carbide with microwave photons, the lifetime can be extended by several orders of magnitude into milliseconds (see the Perspective by Hemmer). The technique effectively creates a quiet space for the qubit, thereby protecting it from magnetic, electric, and temperature fluctuations. This approach could be applicable to other architectures and provide a universal route to protecting qubits. Science , this issue p. 1493 ; see also p. 1432