Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Oncogene, 38(39), p. 6053-6070, 2020

DOI: 10.1038/s41388-020-01414-9

Links

Tools

Export citation

Search in Google Scholar

BRAFV600E drives dedifferentiation in small intestinal and colonic organoids and cooperates with mutant p53 and Apc loss in transformation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBRAFV600E confers poor prognosis and is associated with a distinct subtype of colorectal cancer (CRC). Little is known, however, about the genetic events driving the initiation and progression of BRAFV600E mutant CRCs. Recent genetic analyses of CRCs indicate that BRAFV600E often coexists with alterations in the WNT- and p53 pathways, but their cooperation remains ill-defined. Therefore, we systematically compared small and large intestinal organoids from mice harboring conditional BraffloxV600E, Trp53LSL-R172H, and/or Apcflox/flox alleles. Using these isogenic models, we observe tissue-specific differences toward sudden BRAFV600E expression, which can be attributed to different ERK-pathway ground states in small and large intestinal crypts. BRAFV600E alone causes transient proliferation and suppresses epithelial organization, followed by organoid disintegration. Moreover, BRAFV600E induces a fetal-like dedifferentiation transcriptional program in colonic organoids, which resembles human BRAFV600E-driven CRC. Co-expression of p53R172H delays organoid disintegration, confers anchorage-independent growth, and induces invasive properties. Interestingly, p53R172H cooperates with BRAFV600E to modulate the abundance of transcripts linked to carcinogenesis, in particular within colonic organoids. Remarkably, WNT-pathway activation by Apc deletion fully protects organoids against BRAFV600E-induced disintegration and confers growth/niche factor independence. Still, Apc-deficient BRAFV600E-mutant organoids remain sensitive toward the MEK inhibitor trametinib, albeit p53R172H confers partial resistance against this clinically relevant compound. In summary, our systematic comparison of the response of small and large intestinal organoids to oncogenic alterations suggests colonic organoids to be better suited to model the human situation. In addition, our work on BRAF-, p53-, and WNT-pathway mutations provides new insights into their cooperation and for the design of targeted therapies.