Published in

MDPI, Genes, 8(11), p. 933, 2020

DOI: 10.3390/genes11080933

Links

Tools

Export citation

Search in Google Scholar

Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Previous investigations have found that several genes may be associated with the interindividual variability to the ergogenic response to caffeine. The aim of this study is to analyze the influence of the genetic variations in CYP1A2 (−163C > A, rs762551; characterized such as “fast” (AA genotype) and “slow” caffeine metabolizers (C-carriers)) and ADORA2A (1976T > C; rs5751876; characterized by “high” (TT genotype) or “low” sensitivity to caffeine (C-carriers)) on the ergogenic response to acute caffeine intake in professional handball players. Thirty-one professional handball players (sixteen men and fifteen women; daily caffeine intake = 60 ± 25 mg·d−1) ingested 3 mg·kg−1·body mass (bm) of caffeine or placebo 60 min before undergoing a battery of performance tests consisting of a countermovement jump (CMJ), a sprint test, an agility test, an isometric handgrip test, and several ball throws. Afterwards, the handball players performed a simulated handball match (2 × 20 min) while movements were recorded using inertial units. Saliva samples were analyzed to determine the genotype of each player for the −163C > A polymorphism in the CYP1A2 gene (rs762551) and for the 1976T > C polymorphism in the ADORA2A gene (rs5751876). In the CYP1A2, C-allele carriers (54.8%) were compared to AA homozygotes (45.2%). In the ADORA2A, C-allele carriers (80.6%) were compared to TT homozygotes (19.4%). There was only a genotype x treatment interaction for the ball throwing from 7 m (p = 0.037) indicating that the ergogenic effect of caffeine on this test was higher in CYP1A2 AA homozygotes than in C-allele carriers. In the remaining variables, there were no genotype x treatment interactions for CYP1A2 or for ADORA2A. As a whole group, caffeine increased CMJ height, performance in the sprint velocity test, and ball throwing velocity from 9 m (2.8–4.3%, p = 0.001–0.022, effect size = 0.17–0.31). Thus, pre-exercise caffeine supplementation at a dose of 3 mg·kg−1·bm can be considered as an ergogenic strategy to enhance some neuromuscular aspects of handball performance in professional handball players with low daily caffeine consumption. However, the ergogenic response to acute caffeine intake was not modulated by CYP1A2 or ADORA2A genotypes.