Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 16(10), p. 5610, 2020

DOI: 10.3390/app10165610

Links

Tools

Export citation

Search in Google Scholar

One-Part Alkali-Activated Pastes and Mortars Prepared with Metakaolin and Biomass Ash

Journal article published in 2020 by Alessandra Mobili ORCID, Francesca Tittarelli ORCID, Hubert Rahier ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Common alkali-activated materials (AAMs) are usually manufactured with highly alkaline solutions. However, alkaline solutions are dangerous for workers who must wear gloves, masks, and glasses when handling them. This issue makes common (or two-part) AAMs not user-friendly and problematic for bulk production if no safety procedures are followed. In this paper, the possibility of manufacturing alkali-activated pastes and mortars without alkaline solution is investigated. These innovative one-part AAMs have been prepared with metakaolin as the aluminosilicate precursor, potassium-rich biomass ash as the alkaline activator, and water. AAMs have been prepared by varying the K/Al molar ratio: pastes have been studied in terms of reaction kinetics, through isothermal calorimetry, and mortars have been tested in terms of mechanical compressive strength. Results show that the K/Al molar ratio governs both the reaction kinetics and the mechanical strength of these innovative materials. The highest compressive strength is obtained when the K/Al ratio is equal to 2.5 and the water/solid ratio is equal to 0.49. If biomass ash is heated at 700 °C to decompose the calcium carbonate, its reactivity and the final compressive strength increase.