Full text: Download
Novel androgen receptor (AR) signaling inhibitors have improved the treatment of castration-resistant prostate cancer (CRPC). Nonetheless, the effect of these drugs is often time-limited and eventually most patients become resistant due to various AR alterations. Although liquid biopsy approaches are powerful tools for early detection of such therapy resistances, most assays investigate only a single resistance mechanism. In combination with the typically low abundance of circulating biomarkers, liquid biopsy assays are therefore informative only in a subset of patients. In this pilot study, we aimed to increase overall sensitivity for tumor-related information by combining three liquid biopsy approaches into a multi-analyte approach. In a cohort of 19 CRPC patients, we (1) enumerated and characterized circulating tumor cells (CTCs) by mRNA-based in situ padlock probe analysis, (2) used RT-qPCR to detect cancer-associated transcripts (e.g., AR and AR-splice variant 7) in lysed whole blood, and (3) conducted shallow whole-genome plasma sequencing to detect AR amplification. Although 44–53% of patient samples were informative for each assay, a combination of all three approaches led to improved diagnostic sensitivity, providing tumor-related information in 89% of patients. Additionally, distinct resistance mechanisms co-occurred in two patients, further reinforcing the implementation of multi-analyte liquid biopsy approaches.