Published in

MDPI, Pathogens, 8(9), p. 644, 2020

DOI: 10.3390/pathogens9080644

Links

Tools

Export citation

Search in Google Scholar

Analyses of the Root-Knot Nematode (Meloidogyne graminicola) Transcriptome during Host Infection Highlight Specific Gene Expression Profiling in Resistant Rice Plants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The plant-parasitic nematode Meloidogyne graminicola causes considerable damages to rice (Oryza sativa) culture. Resistance to M. graminicola in the related species Oryza glaberrima reduces root penetration by juveniles and stops further nematode development. M. graminicola genes expressed during O. sativa infection were previously characterized but no information is available about the molecular dialogue established with a resistant plant. We compared the M. graminicola transcriptomes of stage-two juveniles (J2s) before and during infection of susceptible or resistant rice. Among 36,121 M. graminicola genes surveyed, 367 were differentially expressed during infection of resistant or susceptible plants. Genes encoding cell wall-degrading enzymes, peptidases and neuropeptides were expressed for a longer time in resistant plants compared to susceptible plants. Conversely, genes related to nematode development were not activated in the resistant host. The majority of M. graminicola effector genes had similar expression patterns, whatever the host genotype. However, two venom allergen-like protein (VAP)-encoding genes were specifically induced in resistant plants and Mg-VAP1 silencing in J2s reduced their ability to colonize roots. This study highlighted that M. graminicola adapts its gene expression to the host susceptibility. Further investigation is required to assess the role of Mg-VAPs in the rice–nematode interaction.