Published in

BioMed Central, Cardiovascular Diabetology, 1(19), 2020

DOI: 10.1186/s12933-020-01099-0

Links

Tools

Export citation

Search in Google Scholar

Advanced lipoprotein profile disturbances in type 1 diabetes mellitus: a focus on LDL particles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Lipoprotein disturbances have been associated with increased cardiovascular disease (CVD) risk in type 1 diabetes mellitus (T1DM). We assessed the advanced lipoprotein profile in T1DM individuals, and analysed differences with non-diabetic counterparts. Methods This cross-sectional study involved 508 adults with T1DM and 347 controls, recruited from institutions in a Mediterranean region of Spain. Conventional and advanced (assessed by nuclear magnetic resonance [NMR] spectroscopy) lipoprotein profiles were analysed. Crude and adjusted (by age, sex, statin use, body mass index and leukocyte count) comparisons were performed. Results The median (interquartile range) age of the study participants was 45 (38–53) years, 48.2% were men. In the T1DM group, the median diabetes duration was 23 (16–31) years, and 8.1% and 40.2% of individuals had nephropathy and retinopathy, respectively. The proportion of participants with hypertension (29.5 vs. 9.2%), and statin use (45.7% vs. 8.1%) was higher in the T1DM vs. controls (p < 0.001). The T1DM group had a better conventional (all parameters, p < 0.001) and NMR-lipid profile than the control group. Thus, T1DM individuals showed lower concentrations of atherogenic lipoproteins (VLDL-particles and LDL-particles) and higher concentrations of anti-atherogenic lipoproteins (HDL-particles) vs. controls, even after adjusting for several confounders (p < 0.001 for all). While non-diabetic women had a more favourable lipid profile than non-diabetic men, women with T1DM had a similar concentration of LDL-particles compared to men with T1DM (1231 [1125–1383] vs. 1257 [1128–1383] nmol/L, p = 0.849), and a similar concentration of small-LDL-particles to non-diabetic women (672.8 [614.2–733.9] vs. 671.2 [593.5–761.4] nmol/L, respectively; p = 0.790). Finally, T1DM individuals showed higher discrepancies between NMR-LDL-particles and conventional LDL-cholesterol than non-diabetic subjects (prevalence of LDL-cholesterol < 100 mg/dL & LDL-particles > 1000 nmol/L: 38 vs. 21.2%; p < 0.001). All these differences were largely unchanged in participants without lipid-lowering drugs (T1DM, n = 275; controls, n = 317). Conclusions Overall, T1DM participants showed a more favourable conventional and NMR-lipid profile than controls. However, the NMR-assessment identified several lipoprotein derangements in LDL-particles among the T1DM population (higher discrepancies in NMR-LDL-particles vs. conventional LDL-cholesterol; a worse profile in T1DM women) that were overlooked in the conventional analysis. Further studies are needed to elucidate their role in the development of CVD in this population.