Published in

in silico Plants, 2020

DOI: 10.1093/insilicoplants/diaa006



Export citation

Search in Google Scholar

A New Tool for Discovering Transcriptional Regulators of Co-Expressed Genes Predicts Gene Regulatory Networks That Mediate Ethylene-Controlled Root Development

Journal article published in 2020 by Alexandria F. Harkey ORCID, Kira N. Sims, Gloria K. Muday
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Abstract Gene regulatory networks (GRNs) are defined by a cascade of transcriptional events by which signals, such as hormones or environmental cues, change development. To understand these networks, it is necessary to link specific transcription factors (TFs) to the downstream gene targets whose expression they regulate. Although multiple methods provide information on the targets of a single TF, moving from groups of co-expressed genes to the TF that controls them is more difficult. To facilitate this bottom-up approach, we have developed a web application named TF DEACoN. This application uses a publicly available Arabidopsis thaliana DNA Affinity Purification (DAP-Seq) dataset to search for TFs that show enriched binding to groups of co-regulated genes. We used TF DEACoN to examine groups of transcripts regulated by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), using a transcriptional dataset performed with high temporal resolution. We demonstrate the utility of this application when co-regulated genes are divided by timing of response or cell-type specific information, which provides more information on TF/target relationships than when less defined and larger groups of co-regulated genes are used. This approach predicted TFs that may participate in ethylene-modulated root development including the TF NAM (NO APICAL MERISTEM). We used a genetic approach to show that a mutation in NAM reduces the negative regulation of lateral root development by ACC. The combination of filtering and TF DEACoN used here can be applied to any group of co-regulated genes to predict GRNs that control coordinated transcriptional responses.