Published in

Oxford University Press, The Journal of Infectious Diseases, 9(222), p. 1452-1461, 2020

DOI: 10.1093/infdis/jiaa479

Links

Tools

Export citation

Search in Google Scholar

SARS-CoV-2–Specific Antibody Detection for Seroepidemiology: A Multiplex Analysis Approach Accounting for Accurate Seroprevalence

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The COVID-19 pandemic necessitates better understanding of the kinetics of antibody production induced by infection with SARS-CoV-2. We aimed to develop a high-throughput multiplex assay to detect antibodies to SARS-CoV-2 to assess immunity to the virus in the general population. Methods Spike protein subunits S1 and receptor binding domain, and nucleoprotein were coupled to microspheres. Sera collected before emergence of SARS-CoV-2 (n = 224) and of non-SARS-CoV-2 influenza-like illness (n = 184), and laboratory-confirmed cases of SARS-CoV-2 infection (n = 115) with various severities of COVID-19 were tested for SARS-CoV-2–specific IgG concentrations. Results Our assay discriminated SARS-CoV-2–induced antibodies and those induced by other viruses. The assay specificity was 95.1%–99.0% with sensitivity 83.6%–95.7%. By merging the test results for all 3 antigens a specificity of 100% was achieved with a sensitivity of at least 90%. Hospitalized COVID-19 patients developed higher IgG concentrations and the rate of IgG production increased faster compared to nonhospitalized cases. Conclusions The bead-based serological assay for quantitation of SARS-CoV-2–specific antibodies proved to be robust and can be conducted in many laboratories. We demonstrated that testing of antibodies against multiple antigens increases sensitivity and specificity compared to single-antigen–specific IgG determination.