Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Energies, 16(13), p. 4073, 2020

DOI: 10.3390/en13164073

Links

Tools

Export citation

Search in Google Scholar

Iron Phthalocyanine/Graphene Composites as Promising Electrocatalysts for the Oxygen Reduction Reaction

Journal article published in 2020 by Jong S. Park, Dong Wook Chang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recently, the development of non-precious electrocatalysts for the oxygen reduction reaction (ORR) has become important in replacing currently employed platinum (Pt)-based catalysts. Although Pt-based catalysts exhibit satisfactory ORR performances, their high price, easy methanol/CO2 poisoning, and poor long-term stability significantly hamper the forward movement of fuel cell technology. Among the various candidates, graphene-supported iron phthalocyanine (FePc) composites have attracted great attention because of their unique advantages, including low cost, good dimensional stability, high durability, and tunable catalytic activity. In the composite catalyst, FePc molecules are immobilized on graphene via noncovalent or covalent interactions. In addition, two-dimensional graphene substrates can improve not only the electrical conductivity of the composite, but also the dispersion of FePc molecules, triggering a significant improvement in the catalytic properties of the composite catalyst. Herein, we summarize the recent advances in FePc/graphene composite catalysts used for the ORR. Moreover, we discuss the challenges and future perspectives of this promising field.