Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Annals of Work Exposures and Health, 9(64), p. 944-958, 2020

DOI: 10.1093/annweh/wxaa070

Links

Tools

Export citation

Search in Google Scholar

Experimental Assessment of Inhalation and Dermal Exposure to Chemicals During Industrial or Professional Activities in Relation to the Performance of ECETOC TRA

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract For many work situations only insufficient exposure data are available to perform proper risk assessment. Because measuring worker exposure can be time consuming and resource intense, the availability of reliable exposure models is important when performing risk assessments. However, the development and improvement of exposure models are hampered by scarcity of sound exposure data as well as by lack of information on relevant exposure factors and conditions of exposure. This paper describes a study where inhalation and dermal exposure data were collected under defined conditions. Exposure scenarios examined included tasks that have not been investigated in previous validation studies. The results of these measurements were compared with ECETOC TRA model version 3.1 predictions. In this study, five exposure scenarios were selected, namely ‘use in a closed batch process’ (PROC 4), ‘mixing or blending in a partly open batch process’ (PROC 5), ‘rolling’ (PROC 10), ‘immersion’ (PROC 13), and ‘stirring’ (PROC 19). These PROCs stem from the descriptors that Registration, Evaluation and Authorization of Chemicals has established to depict the identified uses of chemical substances. These exposure scenarios were selected mainly because little or no data are available for these situations, or ECETOC TRA is likely to underestimate exposure for these situations. Experiments were performed by volunteers for the selected exposure scenarios, in which tasks were performed aiming to represent real workplace situations. In total 70 experiments were performed, during which 70 dermal exposure measurements (5 volunteers × 2 repeats × 7 scenarios) and 32 inhalation exposure measurements (4 volunteers × 2 repeats × 4 scenarios) were collected. Two formulations were used, namely pure Tinopal SWN powder (solid product, a fluorescent tracer) and 0.5% Tinopal SWN dissolved in 1,2-dichloroethane (1,2-DCE). DCE is considered a moderate volatile liquid. For exposure scenarios using the liquid formulation, both inhalation and dermal measurements were performed, while for exposure scenarios using the pure powder only dermal exposure measurements were performed. In addition, photographs were taken under ultraviolet light to qualitatively assess exposure patterns on hands and body. Volunteers repeatedly performed a selection of tasks under standardized conditions in a test chamber for each exposure scenario. Results show that ECETOC TRA overestimated dermal hand exposure for all PROCs included in the study, and was considered to be conservative. Additionally, ECETOC TRA overestimated inhalation exposure for closed and partially closed processes, but underestimated inhalation exposure for rolling and handling of immersed objects. Qualitative assessment of the hands and body showed mainly the hands were exposed for tasks involving closed and partially closed processes and when handling of immersed objects. Exposure to other body segments were also observed for rolling and stirring. In conclusion, this study gave insights into dermal and inhalation exposure levels during selected task scenarios, and showed that ECETOC TRA is conservative when dermal exposure is estimated. Inhalation exposure estimates for PROCs 10 and 13 tasks with the moderate volatility liquid were underestimated in this study. It may be therefore necessary to re-evaluate base model predictions for these scenarios when medium fugacity liquids are involved.