Published in

Oxford University Press, Biology of Reproduction, 2(71), p. 438-443, 2004

DOI: 10.1095/biolreprod.103.023101

Links

Tools

Export citation

Search in Google Scholar

Matrix Metalloprotease-3 and -9 Proteolyze Insulin-Like Growth Factor-Binding Protein-11

Journal article published in 2004 by Hedley A. Coppock, Anne White, John D. Aplin ORCID, Melissa Westwood
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Growth in utero depends on adequate development and function of the fetal/maternal interface. During pregnancy, the insulin-like growth factors (IGFs), which are known to be critically involved in placental development, are controlled by a binding protein-IGFBP-1-produced by maternal decidualized endometrium. We have previously found that decidua also produces a protease that cleaves IGFBP-1; because proteolysis of IGFBP-1 may represent a mechanism for increasing IGF bioavailability, the present study aimed to identify the protease and its regulators to understand the control of IGF activity at the maternal/fetal interface. Immunochemical methods were used to show that decidualized endometrial cells from first-trimester pregnancy produced matrix metalloprotease (MMP)-3; incubation of IGFBP-1 with either this enzyme or MMP-9, which is produced by the trophoblast, produced a series of fragments that were unable to bind IGF-I. Western immunoblot analysis and immunocytochemistry demonstrated that decidual cells also produce tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, and alpha(2)-macroglobulin, and all three inhibitors attenuated the proteolysis of IGFBP-1 by MMPs. The N-terminal sequence analysis of the fragments revealed that the enzymes cleave IGFBP-1 at (145)Lys/Lys(146), resulting in a small (9-kDa) C-terminal peptide of IGFBP-1. These findings suggest cleavage of IGFBP-1 as a novel mechanism in the control of placental development by matrix metalloproteases.