Published in

American Association for Cancer Research, Molecular Cancer Research, 11(18), p. 1650-1659, 2020

DOI: 10.1158/1541-7786.mcr-20-0180

Links

Tools

Export citation

Search in Google Scholar

Wnt/β-catenin signaling axis is required for TFEB-mediated gastric cancer metastasis and epithelial-mesenchymal transition

Journal article published in 2020 by Shuxuan Li, Fenglin Liu, Ling Xu, Can Li, Xu Yang, Bao Guo, Jianxin Gu, Lan Wang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Gastric cancer remains the third leading cause of cancer-related death, and tumor metastasis is the main risk factor for poor prognosis of patients with gastric cancer. Transcription factor EB (TFEB) is a MiT family member and has been found to drive tumorigenesis in a number of tissues, whereas few studies were focused on investigating its prometastasis role and mechanism in gastric cancer. Here, we found TFEB was upregulated in gastric cancer tissues compared with adjacent normal gastric epithelial tissues. IHC analysis from gastric cancer tissue microarray revealed that TFEB in gastric cancer was correlated with depth of tumor invasion, lymph node or distant metastasis, tumor tumor–node–metastasis stage, and overall survival. Gastric cancer cells with TFEB overexpression presented an increased cell migration or invasion, and epithelial–mesenchymal transition (EMT). Furthermore, gene correlation analysis and gene set enrichment analysis enriched Wnt/β-catenin signaling pathway members in TFEB high-expression group, and the TOP/FOPflash assay verified the effect of TFEB on β-catenin transcription activity. Besides, we found that TFEB could trigger the aggregation of β-catenin in nucleus and activate its transcription, as well as facilitate the expression of Wnt/β-catenin target genes and EMT-related markers, which could be reversed by the Wnt/β-catenin inhibitor XAV-939. Collectively, TFEB enhances gastric cancer metastatic potential by activating Wnt/β-catenin signaling pathway and may become a promising therapeutic target for gastric cancer metastasis. Implications: Overexpressed TFEB predicts a higher rate of metastasis and worse survival in patients with gastric cancer. Mechanistically, TFEB activates Wnt/β-catenin signaling to fuel migratory and invasive activities of gastric cancer cells, as well as EMT.