Published in

MDPI, Processes, 8(8), p. 935, 2020

DOI: 10.3390/pr8080935

Links

Tools

Export citation

Search in Google Scholar

Continuous Improvement Process in the Development of a Low-Cost Rotational Rheometer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The rheological characterization of fluids using a rheometer is an essential task in food processing, materials, healthcare or even industrial engineering; in some cases, the high cost of a rheometer and the issues related to the possibility of developing both electrorheological and magnetorheological tests in the same instrument have to be overcome. With that in mind, this study designed and constructed a low-cost rotational rheometer with the capacity to adapt to electro- and magneto-rheological tests. The design team used the method of continuous improvement through Quality Function Deployment (QFD) and risk analysis tools such as Failure Mode and Effect Analysis (FMEA) and Finite Element Analysis (FEA). These analyses were prepared in order to meet the customer’s needs and engineering requirements. In addition to the above, a manufacturing control based on process sheets was used, leading to the construction of a functional rheometer with a cost of USD $1500.