Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Materials, 15(13), p. 3387, 2020

DOI: 10.3390/ma13153387

Links

Tools

Export citation

Search in Google Scholar

Low Temperature Thermal Atomic Layer Deposition of Aluminum Nitride Using Hydrazine as the Nitrogen Source

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aluminum nitride (AlN) thin films were grown using thermal atomic layer deposition in the temperature range of 175–350 °C. The thin films were deposited using trimethyl aluminum (TMA) and hydrazine (N2H4) as a metal precursor and nitrogen source, respectively. Highly reactive N2H4, compared to its conventionally used counterpart, ammonia (NH3), provides a higher growth per cycle (GPC), which is approximately 2.3 times higher at a deposition temperature of 300 °C and, also exhibits a low impurity concentration in as-deposited films. Low temperature AlN films deposited at 225 °C with a capping layer had an Al to N composition ratio of 1:1.1, a close to ideal composition ratio, with a low oxygen content (7.5%) while exhibiting a GPC of 0.16 nm/cycle. We suggest that N2H4 as a replacement for NH3 is a good alternative due to its stringent thermal budget.