Published in

MDPI, Entropy, 8(22), p. 854, 2020

DOI: 10.3390/e22080854

Links

Tools

Export citation

Search in Google Scholar

Direct and Indirect Effects—An Information Theoretic Perspective

Journal article published in 2020 by Gabriel Schamberg ORCID, William Chapman ORCID, Shang-Ping Xie ORCID, Todd P. Coleman
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Information theoretic (IT) approaches to quantifying causal influences have experienced some popularity in the literature, in both theoretical and applied (e.g., neuroscience and climate science) domains. While these causal measures are desirable in that they are model agnostic and can capture non-linear interactions, they are fundamentally different from common statistical notions of causal influence in that they (1) compare distributions over the effect rather than values of the effect and (2) are defined with respect to random variables representing a cause rather than specific values of a cause. We here present IT measures of direct, indirect, and total causal effects. The proposed measures are unlike existing IT techniques in that they enable measuring causal effects that are defined with respect to specific values of a cause while still offering the flexibility and general applicability of IT techniques. We provide an identifiability result and demonstrate application of the proposed measures in estimating the causal effect of the El Niño–Southern Oscillation on temperature anomalies in the North American Pacific Northwest.