Dissemin is shutting down on January 1st, 2025

Published in

Revista de Morfologia Urbana, 1(8), p. e00140, 2020

DOI: 10.47235/rmu.v8i1.140

Links

Tools

Export citation

Search in Google Scholar

Identificação de Composições da Paisagem Urbana

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A composição do ambiente pode exercer impactos sobre comportamentos, no entanto, esta relação permanece incerta até que qualidades e a paisagem das cidades possam ser analisadas empiricamente. Imagens obtidas através do Google Street View (GSV) possibilitam um grande volume de dados para avaliação automatizada das características ambientais. Técnicas de deep learning tem avançado na identificação de elementos compositivos do ambiente construído. Neste sentido, este estudo busca investigar e testar um procedimento de identificação da configuração e composição da paisagem urbana, por meio da classificação de imagens obtidas pelo GSV. A partir de um banco de imagens de três bairros de Londrina-PR, um modelo de deep learning para classificação de imagens foi proposto. O modelo obteve um bom desempenho, atribuindo corretamente 87,6% das amostras dos respectivos bairros do estudo de caso. Características compositivas foram empiricamente identificadas, considerando a distribuição das amostras no espaço de busca obtido. O modelo proposto contribui na definição de recortes espaciais bem como na mensuração de qualidades ambientais, otimizando coletas de dados, ampliando amostras e conferindo objetividade aos resultados. Esta abordagem contribui na expansão das escalas analíticas da cidade, identificando padrões compositivos e relacionais para o entendimento de elementos influentes no comportamento humano.