Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Clinical EEG and Neuroscience, 4(52), p. 235-245, 2020

DOI: 10.1177/1550059420946648

Links

Tools

Export citation

Search in Google Scholar

Development of Frontal EEG Differences Between Eyes-Closed and Eyes-Open Resting Conditions in Children: Data From a Single-Channel Dry-Sensor Portable Device

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Changes in EEG when moving from an eyes-closed to an eyes-open resting condition result from bottom-up sensory processing and have been referred to as activation. In children, activation is characterized by a global reduction in alpha, frontally present reductions for delta and theta, and a frontal increase for beta. The present study aimed to replicate frontal EEG activation effects using single-channel, dry-sensor EEG, and to extend current understanding by examining developmental change in children. Frontal EEG was recorded using a single-channel, dry-sensor EEG device while 182 children aged 7 to 12 years completed eyes-closed resting (EC), eyes-open resting (EO), and focus (FO) tasks. Results indicated that frontal delta, theta, and alpha power were reduced, and frontal beta power was increased, in the EO compared with the EC condition. Exploratory analysis of a form of top-down activation showed that frontal beta power was increased in the FO compared with to the EO condition, with no differences for other bands. The activation effects were robust at the individual level. The bottom-up activation effects reduced with age for frontal delta and theta, increased for frontal alpha, with no developmental change for top-down or bottom-up frontal beta activation. These findings contribute further to validation of the single-channel, dry-sensor, frontal EEG and provide support for use in a range of medical, therapeutic, and clinical domains.