Published in

Optica, Optica, 9(7), p. 1204, 2020

DOI: 10.1364/optica.393381

Links

Tools

Export citation

Search in Google Scholar

Tunable geometric photocurrent in van der Waals heterostructure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Utilizing the spin or valley degree of freedom is a promising approach for realizing more energy-efficient information processing devices. Circularly polarized light can be used to generate spin/valley current in monolayer 2D transition metal dichalcogenides. We observe a geometrically dependent photocurrent in heterostructure M o S 2 / W S e 2 , where light with a different circular polarization generates photocurrents in opposite directions. Furthermore, we show that this photocurrent persists even at room temperature, and it can be controlled using an in-plane electric field and back gating. We explain the observed phenomena via valley-dependent valence band shift and the valley optical selection rule. This finding may facilitate the use of 2D heterostructures as a platform for opto-valleytronics and opto-spintronics devices.