Links

Tools

Export citation

Search in Google Scholar

Pathogenicity Determinants of Fusarium graminearum on Wheat Ears

Proceedings article published in 2011 by Andrew Mark Beacham, Martin Urban, J. F. Antoniw, Kim Hammond-Kosack ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Some specialist microbes can deploy a range of mechanisms to cause disease on one or more host plant species. To identify entirely new classes of pathogenicity and virulence factors, a bioinformatics-reverse genetics approach has been applied to a plant pathogen where near complete genomic sequence information was available. A genomic region was identified on chromosome 1 of the important cereal pathogen Fusarium graminearum that contains a significant grouping of homologues of known virulence genes. Targeted deletion of these genes revealed a role for the neutral trehalase (NTH1) and protein kinase A regulatory subunit (PKAR) genes in the rate of disease symptom spread by F. graminearum, in addition to the previously reported SNF1 Ser/Thr protein kinase and STE7 MAP kinase kinase genes. Subsequent investigation of further genes at this locality revealed the presence of a gene, here named Fusarium graminearum Contributor to Virulence 1 (FCV1), which represent a novel class of gene required for a full rate of symptom spread. Targeted deletion of FCV1 led to a reduced rate of disease development by F. graminearum on wheat ears and Arabidopsis floral tissue, but did not affect trichothecene mycotoxin production. The fcv1 deletion mutant also exhibits altered hyphal growth, reduced asexual sporulation and altered sensitivity to oxidative and osmotic stress. In the complemented strain, wild-type traits were completely or partially restored. This micro-region of