Dissemin is shutting down on January 1st, 2025

Published in

Springer, Applied Physics B: Lasers and Optics, 8(126), 2020

DOI: 10.1007/s00340-020-07489-2

Links

Tools

Export citation

Search in Google Scholar

Compact mode-locked Er-doped fiber laser for broadband cavity-enhanced spectroscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe report the design and characteristics of a simple and compact mode-locked Er-doped fiber laser and its application to broadband cavity-enhanced spectroscopy. The graphene mode-locked polarization maintaining oscillator consumes less than 5 W of power. It is thermally stabilized, enclosed in a 3D printed box, and equipped with three actuators that control the repetition rate: fast and slow fiber stretchers, and metal-coated fiber section. This allows wide tuning of the repetition rate and its stabilization to an external reference source. The applicability of the laser to molecular spectroscopy is demonstrated by detecting CO2 in air using continuous-filtering Vernier spectroscopy with absorption sensitivity of 5.5 × 10−8 cm−1 in 50 ms.