Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Clinical Medicine, 8(9), p. 2362, 2020

DOI: 10.3390/jcm9082362

Links

Tools

Export citation

Search in Google Scholar

Rapid Phenotype-Driven Gene Sequencing with the NeoSeq Panel: A Diagnostic Tool for Critically Ill Newborns with Suspected Genetic Disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

New genomic sequencing techniques have shown considerable promise in the field of neonatology, increasing the diagnostic rate and reducing time to diagnosis. However, several obstacles have hindered the incorporation of this technology into routine clinical practice. We prospectively evaluated the diagnostic rate and diagnostic turnaround time achieved in newborns with suspected genetic diseases using a rapid phenotype-driven gene panel (NeoSeq) containing 1870 genes implicated in congenital malformations and neurological and metabolic disorders of early onset (<2 months of age). Of the 33 newborns recruited, a genomic diagnosis was established for 13 (39.4%) patients (median diagnostic turnaround time, 7.5 days), resulting in clinical management changes in 10 (76.9%) patients. An analysis of 12 previous prospective massive sequencing studies (whole genome (WGS), whole exome (WES), and clinical exome (CES) sequencing) in newborns admitted to neonatal intensive care units (NICUs) with suspected genetic disorders revealed a comparable median diagnostic rate (37.2%), but a higher median diagnostic turnaround time (22.3 days) than that obtained with NeoSeq. Our phenotype-driven gene panel, which is specific for genetic diseases in critically ill newborns is an affordable alternative to WGS and WES that offers comparable diagnostic efficacy, supporting its implementation as a first-tier genetic test in NICUs.