Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, npj Quantum Materials, 1(5), 2020

DOI: 10.1038/s41535-020-00256-8

Links

Tools

Export citation

Search in Google Scholar

Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHere we investigate antiferromagnetic Eu5In2Sb6, a nonsymmorphic Zintl phase. Our electrical transport data show that Eu5In2Sb6 is remarkably insulating and exhibits an exceptionally large negative magnetoresistance, which is consistent with the presence of magnetic polarons. From ab initio calculations, the paramagnetic state of Eu5In2Sb6 is a topologically nontrivial semimetal within the generalized gradient approximation (GGA), whereas an insulating state with trivial topological indices is obtained using a modified Becke−Johnson potential. Notably, GGA + U calculations suggest that the antiferromagnetic phase of Eu5In2Sb6 may host an axion insulating state. Our results provide important feedback for theories of topological classification and highlight the potential of realizing clean magnetic narrow-gap semiconductors in Zintl materials.