Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Environmental Research Letters, 11(15), p. 114009, 2020

DOI: 10.1088/1748-9326/aba867

Links

Tools

Export citation

Search in Google Scholar

Carbon storage capacity of tropical peatlands in natural and artificial drainage networks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Tropical peatlands store over 75 gigatons of carbon as organic matter that is protected from decomposition and fire by waterlogging if left undrained. Over millennia, this organic matter builds up between channels or rivers into gently mounded shapes called peat domes. Measurements of peat accumulation and water flow suggest that tropical peat domes approach a steady state in which the peat surface morphology is described by a uniform curvature, setting a limit on the carbon that a peatland can store. We explored the maximum amount of carbon that can accumulate as water-saturated peat in natural and artificial drainage networks of northwest and southern Borneo. We find that the maximum volume of peat accumulation in a channel-bounded parcel is proportional to the square of the parcel area times a scale-independent factor describing the shape of the parcel boundary. Thus, carbon capacity per area scales roughly with mean parcel area in the peatland. Our analysis provides a tool that can be used to predict the long-term impacts of artificial drainage, and to devise optimal strategies for arresting fires and greenhouse gas emissions in tropical peatlands.