Published in

SAGE Publications, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 3(235), p. 385-401, 2020

DOI: 10.1177/0954410020944331

Links

Tools

Export citation

Search in Google Scholar

Influence of axial skewed slots on the rotating instability of a low-speed axial compressor

Journal article published in 2020 by Tao Li ORCID, Yadong Wu ORCID, Hua Ouyang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Experimental and numerical analyses were performed on a low-speed axial compressor rotor to investigate the aerodynamic and acoustic effects of axial skewed slots casing treatment on the rotating instability. The experimental results showed that the stall margin could be improved by 8.0% and the frequency broadband hump owing to the rotating instability was suppressed effectively. In the noise spectra, the two dominant broadband humps on both sides of the blade-passing frequency also reduced in amplitude. Full-annulus unsteady computational fluid dynamics simulations were performed near the design condition. Time- and frequency-domain analyses as well as a proper orthogonal decomposition method were applied to obtain the oscillation, frequency, energy and flow characteristics of the rotating instability. Axial skewed slots casing treatment causes a distinct reduction in the amplitude of the pressure fluctuations and frequency spectra with a decrease in the energy of the rotating instability modes. The slots alleviated the tip flow blockage by the periodic injection and removal of the fluid from the passage, which enabled a high tip clearance flow downstream with little impingement on the neighbouring blade tip.