Full text: Download
CO2 methanation has great potential for the better utilization of existing carbon resources via the transformation of spent carbon (CO2) to synthetic natural gas (CH4). Alkali and alkaline earth metals can serve both as promoters for methanation catalysts and as adsorbent phases upon the combined capture and methanation of CO2. Their promotion effect during methanation of carbon dioxide mainly relies on their ability to generate new basic sites on the surface of metal oxide supports that favour CO2 chemisorption and activation. However, suppression of methanation activity can also occur under certain conditions. Regarding the combined CO2 capture and methanation process, the development of novel dual-function materials (DFMs) that incorporate both adsorption and methanation functions has opened a new pathway towards the utilization of carbon dioxide emitted from point sources. The sorption and catalytically active phases on these types of materials are crucial parameters influencing their performance and stability and thus, great efforts have been undertaken for their optimization. In this review, we present some of the most recent works on the development of alkali and alkaline earth metal promoted CO2 methanation catalysts, as well as DFMs for the combined capture and methanation of CO2.