Published in

SAGE Publications, Journal of Dental Research, 13(99), p. 1469-1477, 2020

DOI: 10.1177/0022034520937617

Links

Tools

Export citation

Search in Google Scholar

MicroRNA-29b Promotes Subchondral Bone Loss in TMJ Osteoarthritis

Journal article published in 2020 by J. L. Sun, J. F. Yan, S. B. Yu, J. Zhao, Q. Q. Lin, K. Jiao ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abnormal subchondral bone remodeling plays important roles during osteoarthritis (OA) pathology. Recent studies show that bone marrow mesenchymal stem cells (BMSCs) in osteoarthritic subchondral bones exhibit a prominent pro-osteoclastic effect that contributes to abnormal subchondral bone remodeling; however, the pathologic mechanism remains unclear. In the present study, we used a mouse model with OA-like change in the temporomandibular joint (TMJ) induced by an experimentally unilateral anterior crossbite (UAC) and found that the level of microRNA-29b ( miR-29b), but not miR-29a or miR-29c, was markedly lower in BMSCs from subchondral bones of UAC mice as compared with that from the sham control mice. With an intra-articular aptamer delivery system, BMSC-specific overexpression of miR-29b by aptamer-agomiR-29b rescued subchondral bone loss and osteoclast hyperfunction in UAC mice, as demonstrated by a significant increase in bone mineral density, bone volume fraction, trabecular thickness, and the gene expression of osteocalcin and Runx2 but decreased trabecular separation, osteoclast number and osteoclast surface/bone surface, and the gene expression of cathepsin K, Trap, Wnt5a, Rankl, and Rank as compared with those in the UAC mice treated by aptamer-NC (all P < 0.05). In addition, BMSC-specific inhibition of miR-29b by aptamer-antagomiR-29b exacerbated those responses in UAC mice. Notably, although it primarily affected miR-29b levels in the subchondral bone (but not in cartilage and synovium), BMSC-specific overexpression of miR-29b in UAC mice largely rescued OA-like cartilage degradation, including decreased chondrocyte density, cartilage thickness, and the percentage areas of proteoglycans and type II collagen, while BMSC-specific inhibition of miR-29b aggravated these characteristics of cartilage degradation in UAC mice. Moreover, we identified Wnt5a, but not Rankl or Sdf-1, as the direct target of miR-29b. The results of the present study indicate that miR-29b is a key regulator of the pro-osteoclastic effects of BMSCs in TMJ-OA subchondral bones and plays important roles in the TMJ-OA progression.