Published in

Future Medicine, Future Oncology, 30(16), p. 2411-2420, 2020

DOI: 10.2217/fon-2020-0060

Links

Tools

Export citation

Search in Google Scholar

Modeling precision genomic-based radiation dose response in rectal cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: Genomic-based risk stratification to personalize radiation dose in rectal cancer. Patients & methods: We modeled genomic-based radiation dose response using the previously validated radiosensitivity index (RSI) and the clinically actionable genomic-adjusted radiation dose. Results: RSI of rectal cancer ranged from 0.19 to 0.81 in a bimodal distribution. A pathologic complete response rate of 21% was achieved in tumors with an RSI <0.31 at a minimal genomic-adjusted radiation dose of 29.76 when modeling RxRSI to the commonly prescribed physical dose of 50 Gy. RxRSI-based dose escalation to 55 Gy in tumors with an RSI of 0.31–0.34 could increase pathologic complete response by 10%. Conclusion: This study provides a theoretical platform for development of an RxRSI-based prospective trial in rectal cancer.