Published in

Cell Press, Current Biology, 4(24), p. 351-360, 2014

DOI: 10.1016/j.cub.2013.12.016

Links

Tools

Export citation

Search in Google Scholar

STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification

Journal article published in 2014 by Christian Arquint, Erich A. Nigg ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

STIL is a centriole duplication factor that localizes to the procentriolar cartwheel region, and mutations in STIL are associated with autosomal recessive primary microcephaly (MCPH). Excess STIL triggers centriole amplification, raising the question of how STIL levels are regulated.; Using fluorescence time-lapse imaging, we identified a two-step process that culminates in the elimination of STIL at the end of mitosis. First, at nuclear envelope breakdown, Cdk1 triggers the translocation of STIL from centrosomes to the cytoplasm. Subsequently, the cytoplasmic bulk of STIL is degraded via the anaphase-promoting complex/cyclosome (APC/C)-proteasome pathway. We identify a C-terminal KEN box as critical for STIL degradation. Remarkably, this KEN box is deleted in MCPH mutants of STIL, rendering STIL resistant to proteasomal degradation and causing centriole amplification.; Our results reveal a role for Cdk1 in STIL dissociation from centrosomes during early mitosis, with implications for the timing of cartwheel disassembly. Additionally, we propose that centriole amplification triggered by STIL stabilization is the underlying cause of microcephaly in human patients with corresponding STIL mutations.