Published in

MDPI, Applied Sciences, 14(10), p. 4775, 2020

DOI: 10.3390/app10144775

Links

Tools

Export citation

Search in Google Scholar

The Effect of Extended Ball-Milling upon Three-Dimensional and Two-Dimensional Perovskite Crystals Properties

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The ball-milling of materials is a mechanical grinding method that has different effects on treated materials, and can be used for the direct synthesis of organometal halide perovskite (OHP) crystals. Herein, the effect of such a process, extended over a large temporal window, is related to the properties of referential three-dimensional (3D) MAPbI3 (MA = methylammonium) and two-dimensional (2D) PEA2PbI4 (PEA = phenylethylammonium) perovskite crystals. For both 2D and 3D systems, the ball-milling induces a reduction of the crystallite dimension, accompanied by a worsening of the overall crystallinity, but without any sign of amorphization. For MAPbI3, an intriguing room temperature structural transition, from tetragonal to cubic, is observed. The processing in both cases impacts on the morphology, with a reduction of the crystal shape quality connected to the particles’ agglomeration tendency. All these effects translate to a “blue shift” of the absorption and emission features, suggesting the use of this technique to modulate the 3D and 2D OHPs’ properties.