Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(10), 2020
DOI: 10.1038/s41398-020-00890-7
Full text: Unavailable
AbstractAutonomic nervous system (ANS) dysfunction (i.e., increased sympathetic and/or decreased parasympathetic activity) has been proposed to contribute to psychosis vulnerability. Yet, we still lack directed therapeutic strategies that improve ANS regulation in psychosis or at-risk states. The oxytocin system constitutes a potential therapeutic target, given its role in ANS regulation. However, whether intranasal oxytocin ameliorates autonomic regulation during emerging psychosis is currently unknown. We pooled together two datasets, one of 30 men at clinical high risk for psychosis (CHR-P), and another of 17 healthy men, who had participated in two double-blinded, placebo-controlled, randomised, crossover MRI studies with similar protocols. All participants self-administered 40 IU of intranasal oxytocin or placebo using a nasal spray. We recorded pulse plethysmography during a period of 8 min at about 1 h post dosing and estimated heart rate (HR) and high-frequency HR variability (HF-HRV), an index of cardio-parasympathetic activity. CHR-P and healthy men did not differ at resting HR or HF-HRV under placebo. We found a significant condition × treatment effect for HF-HRV, showing that intranasal oxytocin, compared with placebo, increased HF-HRV in CHR-P but not in healthy men. The main effects of treatment and condition were not significant. In this proof-of-concept study, we show that intranasal oxytocin increases cardio-parasympathetic activity in CHR-P men, highlighting its therapeutic potential to improve autonomic regulation in this clinical group. Our findings support the need for further research on the preventive and therapeutic potential of intranasal oxytocin during emerging psychosis, where we lack effective treatments.