Published in

Oxford University Press, Nucleic Acids Research, 15(48), p. 8796-8807, 2020

DOI: 10.1093/nar/gkaa589

Links

Tools

Export citation

Search in Google Scholar

Impact of 5-formylcytosine on the melting kinetics of DNA by 1H NMR chemical exchange

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract 5-Formylcytosine (5fC) is a chemically edited, naturally occurring nucleobase which appears in the context of modified DNA strands. The understanding of the impact of 5fC on dsDNA physical properties is to date limited. In this work, we applied temperature-dependent 1H Chemical Exchange Saturation Transfer (CEST) NMR experiments to non-invasively and site-specifically measure the thermodynamic and kinetic influence of formylated cytosine nucleobase on the melting process involving dsDNA. Incorporation of 5fC within symmetrically positioned CpG sites destabilizes the whole dsDNA structure—as witnessed from the ∼2°C decrease in the melting temperature and 5–10 kJ mol−1 decrease in ΔG°—and affects the kinetic rates of association and dissociation. We observed an up to ∼5-fold enhancement of the dsDNA dissociation and an up to ∼3-fold reduction in ssDNA association rate constants, over multiple temperatures and for several proton reporters. Eyring and van’t Hoff analysis proved that the destabilization is not localized, instead all base-pairs are affected and the transition states resembles the single-stranded conformation. These results advance our knowledge about the role of 5fC as a semi-permanent epigenetic modification and assist in the understanding of its interactions with reader proteins.