Published in

Oxford University Press, Journal of Economic Entomology, 5(113), p. 2079-2085, 2020

DOI: 10.1093/jee/toaa144

Links

Tools

Export citation

Search in Google Scholar

Mortality of Potato Psyllid (Hemiptera: Triozidae) on Host Clippings Inoculated With Ergot Alkaloids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Our previous study provided correlative evidence that morning glory species harboring endophytic fungi (Periglandula) are resistant to potato psyllid [Bactericera cockerelli (Šulc)], whereas species free of fungi often allowed psyllid development. In this study, we manipulated levels of ergot alkaloids in host tissues by inoculating clippings from potato plants with extracts from morning glories that harbor Periglandula [Ipomoea leptophylla Torrey, Ipomoea imperati (Vahl) Grisebach, Ipomoea tricolor Cavanilles, Ipomoea pandurata (L.) G. F. Meyer, and Turbina corymbosa (L.)] and one species (Ipomoea alba L.) that does not harbor the endophyte. Ergot alkaloids (clavines, lysergic acid amides, and ergopeptines) were detected in potato clippings, thus confirming that leaves had taken up compounds from solutions of crude extracts. Psyllid mortality rates on inoculated clippings ranged between 53 and 93% in treatments producing biochemically detectable levels of alkaloids, when compared with 15% mortality in water controls or the alkaloid-free I. alba. We then tested synthetic analogs from each of the three alkaloid classes that had been detected in the crude extracts. Each compound was assayed by inoculating clippings of two host species (potato and tomato) at increasing concentrations (0, 1, 10, and 100 µg/ml in solution). Psyllids exhibited a large and significant increase in mortality rate beginning at the lowest two concentrations, indicating that even very small quantities of these chemicals led to mortality. Feeding by nymphs on artificial diets containing synthetic compounds resulted in 100% mortality within 48 h, irrespective of compound. Further testing of ergot alkaloids to characterize the mode of action that leads to psyllid mortality is warranted.