Published in

IOP Publishing, Plasma Sources Science and Technology, 8(29), p. 085021, 2020

DOI: 10.1088/1361-6595/aba4b9

Links

Tools

Export citation

Search in Google Scholar

Nanosecond pulsed discharges in distilled water - Part II: Line emission and plasma propagation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Nanosecond plasmas in liquids can initiate chemical processes that are exploited in the fields of water treatment, electrolysis or biomedical applications. The understanding of these chemical processes relies on unraveling the dynamics of the variation of pressures, temperatures and species densities during the different stages of plasma ignition and plasma propagation as well as the conversion of the liquid into the plasma state and the gas phase. This is analyzed by monitoring the emission of nanosecond pulsed plasmas that are generated by high voltages of 20 kV and pulse lengths of 10 ns applied to a tungsten tip with 50 μm diameter immersed in water. The spectra are acquired with a temporal resolution of 2 ns and the emission pattern is modelled by a combination of black body radiation from the hot tungsten tip and the pronounced emission lines of the hydrogen Balmer series. The data indicate two contributions of the hydrogen line radiation that differ with respect to the degree of self-absorption. It is postulated that one contribution originates from a recombination region showing strong self absorption and one contribution from an ionization region showing very little self-absorption. The emission lines from the ionization region are evaluated assuming Stark broadening, that yielded electron densities up to 5 × 1025 m−3. The electron density evolution follows the same trend as the temporal evolution of the voltage applied to the tungsten tip. The propagation mechanism of the plasma is similar to that of a positive streamer in the gas phase, although in the liquid phase field effects such as electron transport by tunneling should play an important role.