Dissemin is shutting down on January 1st, 2025

Published in

Springer, Neurological Sciences, 2(42), p. 655-663, 2020

DOI: 10.1007/s10072-020-04574-4

Links

Tools

Export citation

Search in Google Scholar

Multimodal evaluation of the cerebrovascular reserve in Neurofibromatosis type 1 patients with Moyamoya syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPurposeMoyamoya syndrome (MMS) is a rare intracranial arterial vasculopathy which can occur in neurofibromatosis type 1 (NF1) disease, representing a cause of cerebrovascular reserve (CVR) impairment, possibly leading to ischemic stroke. Here, we evaluated noninvasive imaging techniques used to assess CVR in MMS patients, describing clinical and imaging findings in patients affected by MMS-NF1.MethodsFollowing strict inclusion and exclusion criteria, in this retrospective observational study, we evaluated imaging data of nine consecutive MMS-NF1 patients (M/F = 5/4, mean age: 12.6 ± 4.0). Subjects underwent a multimodal evaluation of cerebral vascular status, including intracranial arterial MR Angiography (MRA), MRI perfusion with dynamic susceptibility contrast (DSC) technique, and 99mTc-hexamethylpropyleneamine oxime (HMPAO) SPECT.ResultsIn 8 out 9 patients (88.8%, 6/8 symptomatic), time-to-peak maps were correlated with the involved cerebral hemisphere, while in 6 out 9 patients (66.6%, 5/6 symptomatic), mean transit time (MTT) maps showed correspondence with the affected cerebrovascular territories. Cerebral blood flow (CBF) calculated using DSC perfusion failed to detect the hypoperfused regions instead identified by SPECT-CBF in all patients, while MTT maps overlapped with SPECT-CBF data in all cases and time-to-peak maps in 60.0%.ConclusionsAlthough SPECT imaging still represents the gold standard for CBF assessment, our results suggest that data obtained using DSC perfusion technique, and in particular MTT maps, might be a very useful and noninvasive tool for evaluating hemodynamic status in MMS-NF1 patients.