Published in

American Chemical Society, Journal of Organic Chemistry, 2(79), p. 559-570, 2013

DOI: 10.1021/jo4022309

Links

Tools

Export citation

Search in Google Scholar

The Role of the Amino Acid-Derived Side Chain in the Preorganization ofC2-Symmetric Pseudopeptides: Effect on SN2 Macrocyclization Reactions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A family of pseudopeptidic macrocycles containing non-natural amino acids have been synthesized. The macrocyclization reaction has been studied experimentally and computationally, demonstrating the key role of both the amino acid side chain and the catalytic bromide anion. The bromide anion acts as an external template assisting the folding of the open-chain precursor in a proper conformation. Computations revealed that in the presence of the anion, the effect of the side chain on the energy barrier for the macrocyclization is very small. However, the effect on the conformational equilibria of the open-chain precursors is very important. Overall, the stabilization of those conformation(s) in which the two reactive ends of the open-chain intermediate are located at short distances from each other with the correct orientation is the critical parameter defining the success of the macrocyclization. The best yield was found for the compound containing cyclohexylalanine, for which the computationally-predicted most stable conformer in the presence of Br– has a proper preorganization for cyclization. The remarkable agreement obtained between experiments and theory reveals that the computational approach here considered can be of great utility for the prediction of the behavior of other related systems and for the design of appropriate synthetic routes to new macrocyclic compounds.