Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-68275-w

Links

Tools

Export citation

Search in Google Scholar

Interfacial stabilization for epitaxial CuCrO2 delafossites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractABO2 delafossites are fascinating materials that exhibit a wide range of physical properties, including giant Rashba spin splitting and anomalous Hall effects, because of their characteristic layered structures composed of noble metal A and strongly correlated BO2 sublayers. However, thin film synthesis is known to be extremely challenging owing to their low symmetry rhombohedral structures, which limit the selection of substrates for thin film epitaxy. Hexagonal lattices, such as those provided by Al2O3(0001) and (111) oriented cubic perovskites, are promising candidates for epitaxy of delafossites. However, the formation of twin domains and impurity phases is hard to suppress, and the nucleation and growth mechanisms thereon have not been studied for the growth of epitaxial delafossites. In this study, we report the epitaxial stabilization of a new interfacial phase formed during pulsed-laser epitaxy of (0001)-oriented CuCrO2 epitaxial thin films on Al2O3 substrates. Through a combined study using scanning transmission electron microscopy/electron-energy loss spectroscopy and density functional theory calculations, we report that the nucleation of a thermodynamically stable, atomically thick CuCr1−xAlxO2 interfacial layer is the critical element for the epitaxy of CuCrO2 delafossites on Al2O3 substrates. This finding provides key insights into the thermodynamic mechanism for the nucleation of intermixing-induced buffer layers that can be used for the growth of other noble-metal-based delafossites, which are known to be challenging due to the difficulty in initial nucleation.