Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(897), p. 119, 2020

DOI: 10.3847/1538-4357/ab93ad

Links

Tools

Export citation

Search in Google Scholar

Mapping the Galactic Disk with the LAMOST and Gaia Red Clump Sample. VI. Evidence for the Long-lived Nonsteady Warp of Nongravitational Scenarios

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract By combining LAMOST DR4 and Gaia DR2 common red clump stars with age and proper motion, we analyze the amplitude evolution of the stellar warp independently of any assumption with a simple model. The greatest height of the warp disk increases with galactocentric distance in different populations and is dependent on age: the younger stellar populations exhibit stronger warp features than the old ones, accompanied by the warp amplitude γ (age) decreasing with age, and its first derivative is different from zero. The azimuth of the line of nodes ϕ w is stable at −5° without clear time evolution, which perfectly confirms some previous works. All of this self-consistent evidence supports that our Galactic warp should most likely be a long-lived but nonsteady structure and not a transient one, which is supporting that the warp originated from gas infall onto the disk or other hypotheses that suppose that the warp mainly affects the gas, and consequently, younger populations tracing the gas are stronger than older ones. In other words, the Galactic warp is induced by the nongravitational interaction over the disk models.